The effect of pressure on ferromagnetic properties of the van-der-Waals materials VI₃ and CrI₃

M. Kratochvílová¹, J. Valenta¹, S. Son^{2,3}, P. Proschek¹, M. Míšek⁴, J. Prchal¹, <u>V. Sechovský</u>^{*1}, and J-G. Park^{2,3}

¹ Charles University, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2, Czech Republic ¹Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Korea

³Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

⁴Institute of Physics, Academy of Sciences of Czech Republic, v.v.i, Na Slovance 2, 182 21 Prague 8, Czech Republic

Keywords: van-der-Waals ferromagnet, high pressure, dimensionality.

*e-mail: sech@mag.mff.cuni.cz

Two-dimensional van-der-Waals (vdW) magnetic materials have in recent years become the subject of an intense research [1]. In these materials, hydrostatic pressure represents a powerful tuning parameter. The dominant effect of hydrostatic pressure on weakly bonded planes is consists of pressing them together which may gradually convert the system from two- to three-dimensional.

Despite belonging to a well-studied family of transitionmetal trihalides, the VI₃ and CrI₃ iodides have received a significant attention just recently [2, 3, 4, 5, 6]. VI₃ crystallizes in the trigonal P31c structure which reorders into a monoclinic C2/c structure below $T_{\rm S} = 80$ K [2]. The material is a hard ferromagnet below $T_{\rm C} = 50$ K with high anisotropy. Optical and electrical transport measurements reveal insulating properties and the previous theoretical predictions suggest VI₃ to be a correlated Mott insulator. The Curie temperature $T_{\rm C}$ has been reported intact by hydrostatic pressure up to ~ 0.7 GPa. The observed rapid increase of $T_{\rm C}$ at higher pressures up to 1 GPa has been attributed to the commencing departure of dimensionality away from two [2].

CrI₃, on the other hand, is a semiconductor which exhibits at $T_{\rm C} = 61$ K a transition to an anisotropic 3D-Ising ferromagnetic state with the easy magnetization axis perpendicular to the layers [7]. The compound exhibits a large van der Waals gap which leads to a 3D magnetic characteristics. $T_{\rm C}$ increasing upon increasing pressure up to 1 GPa has been reported [8].

We present results comprehensive measurements of the magnetic properties of VI_3 and CrI_3 single crystals in hydrostatic pressures far exceeding the values reported sofar.

The single crystals were prepared by chemical vapor transport method as described elsewhere [3]. The reference ambient-pressure magnetization data with respect temperature and magnetic field was measured using PPMS systems (*Quantum Design*), and Closed Cycle Cryocooler (*Janis Research*), respectively. A double-layered CuBe/NiCrAl piston-cylinder pressure cell was used to generate pressures up to \sim 3 GPa, with a Daphne 7373 pressure medium and a manganin manometer. Further extension of pressure-effect measurements up to 10 GPa using a DAC cell is in progress.

The temperature dependence of the real part of ac susceptibility χ_{Re} in VI₃ reveals clearly the ferromagnetic transition at ~ 50 K. Except of that, three additional, less pronounced peaks above $T_{\rm C}$ are observed in the temperature range of ~ 52 K-60 K. The anomalies seem to be almost unaffected by increasing pressure up to ~ 0.8 GPa. Above this pressure value, we observed the peaks merging into one and simultaneously $T_{\rm C}$ increases abruptly by 20% in 1.2 GPa. Similar pressure evolution of $T_{\rm C}$ was seen in Ref. [2]. For higher pressures up to 3.5 GPa, $T_{\rm C}$ increases linearly. The measured temperature dependence of magnetization reveals the ferromagnetic transition at ~ 50 K as well [2]; with increasing pressures, the transition becomes sharper and the absolute value of magnetization increases above ~ 0.6 GPa.

On the other hand, we have observed a significantly different pressure effect in CrI₃ compound, contradicting the results reported in [8]. Besides the dominant peak in the temperature dependence of the real part of AC susceptibility χ_{Re} corresponding to T_{C} , we observe another smaller peak at $T^* \sim 50$ K which shows identical pressure dependence. We observed only a very modest increase of $T_{\rm C}$ in low pressures up to 0.6 GPa which is not as significant as shown in Fig. 4 of Ref. [8]. The value of $T_{\rm C}$ does not change considerably in preasures up to ~ 1.5 GPa. At higher pressures, surprisingly, $T_{\rm C}$ starts to decrease. This linear decreasing tendency is observed up to the highest applied pressure of 3 GPa. The imaginary part of AC susceptibility vs. temperature $\chi_{Im}(T)$ shows peak only at T^* in all applied pressures. No frequency dependence was detected.

This different character of the pressure dependence of the ac susceptibility in the VI_3 and CrI_3 compounds is is tentatively attributed to different evolution of dimensionality of ferromagnetic order, respectively.

Acknowledgments: This work is part of the research program GACR 19-16389J which is financed by the Czech Science Foundation. Experiments were performed in the Materials Growth and Measurement Laboratory MGML (see: http://mgml.eu). This work was supported by the Institute for Basic Science of the Republic of Korea (Grant No. IBS-R009-G1).

- [1] P. Ajayan et al, *Phys. Today*, 2016, **69**(9), 38.
- [2] S. Son et al., *PRB*, 2019, **99**, 041402(R).

- [3] Y. Liu and C. Petrovic, *arXiv:1903.05477*, 2019.
 [4] S. Tian et al., *arXiv:1812.06658*, 2018.
 [5] T. Kng et al., *arXiv:1812.05982*, 2018.

- [6] G. T. Lin et al., *arXiv:1801.09878*, 2018.
- [7] M. A. Guire et al., Chem. Mater., 2015, 27, 612–620.
- [8] S. Mondal et al., *arXiv:1901.00706*, 2019.