Pressure effect on superconductivity in YB₆

<u>S. Gabáni</u>¹*, K. Flachbart¹, E. Gažo¹, M. Orendáč¹, G. Pristáš¹, P. Samuely¹, T. Mori², D. Braithwaite³, M. Hanfland⁴ and K. Kamenev⁵

¹Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia ²National Institute for Materials Science, Namiki 1-1, 3050044 Tsucuba, Japan ³SPSMS, UMR-E, CEA, INAC, 17 Rue des Martyrs, 38054 Grenoble, France ⁴ESRF, 6 Rue Jules Horowitz, 38000 Grenoble, France ⁵Centre for Science at Extreme Conditions, University of Edinburgh, UK

Keywords: high pressure, superconductivity, electron-phonon interaction, Raman spectroscopy, yttrium hexaboride

*e-mail: gabani@saske.sk

Yttrium hexaboride YB₆ is known as a conventional type-II BCS superconductor with the second highest superconducting transition temperature ($T_c < 8$ K) among boron compounds after famous MgB₂ ($T_c \approx 40$ K). One of the explanations of this rather high T_c is the strong coupling of electrons with the dominant Einstein-like acoustic mode of Y ions at $\hbar\omega_E \approx 8$ meV [1]. The predicted [2, 3] and observed [4] fast initial decrease in T_c with pressure ($dT_c/dp \approx 0.55$ K/GPa) was attributed to the high Grüneisen parameter of this mode, $\gamma = -\partial n\omega_E / \partial nV \approx 9$ [2], which represents the change of the circular frequency ω_E with pressure (volume V).

In order to contribute to the elucidation of the pressure effect on the Einstein-like mode, we have investigated the pressure effect on ω_E by Raman scattering up to 14 GPa (see Figure 1). The analysis of our Raman spectra together with previous *ac*-susceptibility measurements of T_c under pressure up to 11 GPa as well as lattice parameter up to 32 GPa [5] are in accordance with the recent experiments [6] as well as calculations [3] and provides new original information about the value of the electron-phonon coupling constant of YB₆ at ambient pressure, λ_0 , and its change with pressure, $\lambda(p)$. The pressure effect on the λ calculated from the McMillan-Allen-Dynes expression for the superconducting transition temperature was determined to be $\partial \ln \lambda / \partial \ln V \cong 7.2$.

Figure 1. Pressure dependence of the Einstein-like phonon mode energy of yttrium ions in YB₆ received from our Raman spectra (*open circles*), compared with the Rigid-muffin-tin approximation [3] (*solid squares*).

Acknowledgments: This work was supported by the Slovak agencies VEGA (grant no. 2/0032/16) and APVV (grant no. 17-0020). Liquid nitrogen for experiments was sponsored by U.S. Steel Kosice.

- P. Szabó et al., Superconducting Science and Technology 2013, 26, 045019.
- [2] R. Lortz et al., *Physical Review B* 2006, **73**, 024512.
- [3] Y. Xu et al., *Physical Review B* 2007, **76**, 214103.
- [4] R. Khasanov et al., *Physical Review Letters* 2006, 97, 157002.
- [5] S. Gabani et al., *Physical Review B* 2014, 90, 045136.
- [6] Yu.S. Ponosov, N.Yu. Shitsevalova, JETP Letters 2015, 102, 295.