High-pressure studies of high-nitrogen-content pyridazine-based compounds

A. Olejniczak¹*, A.Katrusiak², M. Podsiadło¹ and A. Katrusiak¹

¹Department of Materials Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland ²Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland

Keywords: high pressure, phase transition, explosives

*e-mail: aniao@amu.edu.pl

Intermolecular interaction of highly energetical materials are of particular interest. Presently we have investigated a few of pyridazine-based compounds, capable of transforming between azide and tetrazole forms. The azido-tetrazole transformation is known for pyridazine derivatives, which are important compounds in biology, pharmacy and chemistry.

The compression of the pyridazine derivatives materials has been *in situ* studied in a diamond-anvil cell by single-crystal X-ray diffraction. The studies revealed phase transitions and also a hydrate formation. The obtained polymoprphs has similar intermolecular interactions, however the molecular arrangement is different. In all studied compounds the azide or tetrazole form presented at ambient conditions is prevented.

Figure 1. Studied pyridazine-based compounds and the possible tautomeric forms.

Acknowledgments: This work was supported by SONATA 12, 2016/23/D/ST5/00283, Programme by National Science Center, Poland.