Ferromagnetic to paramagnetic transition of SrRuO₃ under pressure Anh Tong^{1*}, Pau Jorba¹, Marc Seifert¹, Stefan Kunkemöller², Kevin Jenni², Markus Braden², James S. Schilling¹, Christian Pfleiderer¹ ¹Technical University of Munich, James-Franck-Str.1, Germany ²University of Cologne, Zülpicher Str. 77, Germany Keywords: high pressure, phase transition, ruddlesden-popper perovskite series. *e-mail: anh.tong@frm2.tum.de In the Ruddlesden-Popper perovskite series, $Sr_{n+1}Ru_nO_{3n+1}$, intense experimental and theoretical efforts have been dedicated to unravel the nature of unconventional superconductivity in single-layer Sr_2RuO_4 (n=1) as well as a putative electronic nematic phase masking the quantum critical end-point in the double-layer itinerant metamagnet $Sr_3Ru_2O_7$ (n=2). We report an experimental study of the zero temperature ferromagnetic to paramagnetic transition under pressures up to 20 GPa in high quality single crystals of the infinite layer itinerant ferromagnet $SrRuO_3$ (n= ∞). Our study aims to reconcile the properties of $Sr_3Ru_2O_7$ and Sr_2RuO_4 with the generic temperature-pressure-magnetic field phase diagram of itinerant ferromagnets.